The 16th U.S.-Korea Forum on Nanotechnology 2019.09.24

Flexible and Stretchable Organic Artificial Nerves

Tae-Woo Lee (李泰雨)

Dept. of Materials Science and Engineering Seoul National University (e-mail: twlees@snu.ac.kr)

2

3

Organic artificial synapses

W. Xu, T.-W. Lee* et al, Science Advances, 2, e1501326 (2016)

Flexible organic afferent nerve

Y. Kim+, A. Chortos+, W. Xu+*, Z. Bao*, T.-W. Lee* et al, Science, 360, 998 (2018)

Stretchable organic sensorimotor synapses

Y. Lee+, J.Y. Oh+, Z. Bao*, T.-W. Lee* et al, Science Advances, 4, eaat7387 (2018)

Bio-inspired systems for engineering devices

- Biological systems can inspire new generations of engineering devices.
- In our body, sensory, neural, and motor processing tasks are done extremely efficiently and robustly with extremely low energy consumption, in very little volumes
- The entire brain and body are put together with energy-efficient neurons and cells to robustly perform complex information-processing tasks.
- One can learn a lot of things from biology to develop efficient technologies, to learn to architect systems that can perform efficiently and reliably with unreliable devices, to build systems that automatically learn and adapt to a changing environment.

Bio-inspired electronics & soft robotics

Bio-inspired soft electronics and robots

✓ Bio-inspired electronics and robotics moves/senses/thinks like a human

Our Research Direction in Flexible Electronics (Tae-Woo Lee's Group)

Neuro-inspired Organic Artificial Sensory Nerves

Organic Nanowire Synapses

✓ONW synaptic transistor that emulates a biological synapse not only in morphology, but also in important working principles.

- The conductive lines and probe (A') mimic an axon (A) that deliver presynaptic spikes from a preneuron to the presynaptic membrane.
- An ONW (B') mimics a biological dendron (B) in which an EPSC is generated in response to presynaptic spikes and is delivered to a postneuron.

ONW Synaptic transistors (Short term potentiation)

Time (s) W. Xu, T.-W. Lee* et al, SCIENCE Adv. 2, e1501326 (2016) 8

STP

Schematic of the working mechanism of ONW ST for long-term plasticity

The spontaneous release of the trapped anions in the ONW is slow, inducing long-term memory.

ONW Synaptic transistors

✓ Long-term plasticity

- Long-term potentiation (LTP) that usually occurs at excitatory synapses, which is a persistent increase in synaptic strength following a number of consecutive stimulations of a synapse.
- Consecutive 30 negative pulses accumulates and increased EPSC
- Long-term retention obtained W. Xu, T.-W. Lee* et al, SCIENCE Advances, 2, e1501326 (2016) 10

Energy consumption per synaptic event of current available synaptic devices

W. Xu, T.-W. Lee* et al, SCIENCE Advances, 2, e1501326 (2016) 11

Contents

2

3

Flexible organic afferent nerve

Y. Kim+, A. Chortos+, W. Xu+*, Z. Bao*, T.-W. Lee* et al, Science, 360, 998 (2018)

Stretchable organic sensorimotor synapses

Y. Lee+, J.Y. Oh+, Z. Bao*, T.-W. Lee* et al, Science Advances, 4, eaat7387 (2018)

✓ Brain-inspired Organic Artificial Synapse

✓ Materials for CNS

- Long-term potentiation
- Non-volatile memory property
- ✓ Redox active polymer
- ✓ Electrochemical ion doping

mechanism

P3HT + [EMIM][TFSI]

T.-W. Lee et al., Sci. Adv., 2016

Nat. Mater., 2017

ONW Synaptic Transistor to mimic Peripheral nervous System

Artificial nerves

Artificial afferent and efferent nerves

- ✓ Afferent nerve : axons of sensory neurons carrying sensory information from body
- ✓ Efferent nerve : axons of motor neuron
- Applications of artificial nerves: robotics and prosthetics with the combination of sensors and motors

Artificial Mechano-Sensory Nerves

https://www.youtube.com/watch?v=IrYTD1xZVSs

Biological mechanosensory nerve

 \rightarrow Biological mechanosensory system processes pressure information

Artificial mechanosensory nerve

Biological sensory nerves

Artificial sensory nerves

Resistive pressure sensor mimicking mechanoreceptor

Artificial mechanosensory nerves

Biological sensory nerves

Artificial sensory nerves

Ring Oscillator Output

3-stage ring oscillator

 $V_{DD} = -2.3 V, V_{LL} = -4.6 V, V_{HH} = 1 V$

Biological mechanosensory nerves: Action potential frequency range= 0.4-100 Hz

Pressure sensor + ring oscillator

Mechanosensory nerves

Biological sensory nerves

Artificial sensory nerves

V_{out} of ring oscillators connected to the gate of synaptic transistors

Artificial Peripheral Nervous System

✓ Neuromorphic Bioelectronics

✓ Materials design for PNS

Short-term potentiation Volatile & Fast decay

- ✓ Low ion doping efficiency
- Electric double layer

My Approaches

Low ion doping efficiency
 → Donor-Acceptor polymer

• Fast decay – Electrical double layer

• Stretchable – Nanowire Transistors

Ion-gel transistors (synaptic transistors)

Pressure sensor + ring oscillator + synaptic transistors

Integration of pressure inputs

Frequency (Hz)

Movement recognition and braille reading

Braille reading

A larger D_{VP} means more dissimilarity between two spike trains.

Braille letters became more distinguishable

Hybrid reflex arc (artificial afferent nerve)

3

W. Xu, T.-W. Lee* et al, Science Advances, 2, e1501326 (2016)

2 Flexible organic afferent nerve

Y. Kim+, A. Chortos+, W. Xu+*, Z. Bao*, T.-W. Lee* et al, Science, 360, 998 (2018)

Stretchable organic sensorimotor synapses

Y. Lee+, J.Y. Oh+, Z. Bao*, T.-W. Lee* et al, Science Advances, 4, eaat7387 (2018)

Artificial Optoelectronic Neuromuscular System

- Stretchable artificial synapse is necessary for artificial motor system of neuro-inspired soft robots with various motions.
- Motor Neuron
 Presynaptic membrane = Gate
 electrode
 Presynaptic potential = Gate
 voltage
 - Optogenetics Photosensitive protein = Photodetector

٠

- Neuromuscular junction
 Synaptic cleft = Ion-gel electrolyte
 Neurotransmitter = Anion
- Skeletal muscle
 Postsynaptic membrane = OSC NW
 Postsynaptic potential = Drain
 current
 Muscle fiber = Polymer actuator

Y. Lee+, J. Y. Oh+, Z. Bao*, T.-W.Lee* *et al, SCIENCE Adv.,* 4, eaat7387 (2018) 32

Optical Neuromuscular Electronic Synapse

Y. Lee+, J. Y. Oh+, Z. Bao*, T.-W.Lee* et al, SCIENCE Adv., 4, eaat7387 (2018) 33

Optical Neuromuscular Electronic Synapse

✓ Without artificial synapse (Constant displacement with constant voltage)

✓ Our synapse (Contraction of artificial muscle gradually increases as the fixed light pulses (action potentials) are applied repeatedly)

• More similar to biological muscle contraction

2

3

W. Xu, T.-W. Lee* et al, Science Advances, 2, e1501326 (2016)

Flexible organic afferent nerve

Y. Kim+, A. Chortos+, W. Xu+*, Z. Bao*, T.-W. Lee* et al, Science, 360, 998 (2018)

Stretchable organic sensorimotor synapses

Y. Lee+, J.Y. Oh+, Z. Bao*, T.-W. Lee* et al, Science Advances, 4, eaat7387 (2018)

Summary

- Development of a stretchable artificial synapse and a novel bio-inspired sensorimotor system.
- Suggesting a communication method of human/machine interface.
- Promising strategy to advance soft robotics, neuro-inspired robotics and neuroprothetics.

Acknowledgements

Thanks for your attention

Printed, Flexible Nano-Electronics & Energy Laboratory (PNEL) at SNU

Stanford University

- Prof. Zhenan Bao
- Dr. Yeongin Kim
- Dr. Alex Chortos
- Dr. Jin Young Oh
- Mr. Yuxin Liu

POSTECH

- Prof. Hyunsang Hwang
- Prof. Moon Jeong Park

